48 research outputs found

    Time-division multiplexing for cable reduction in ultrasound imaging catheters

    Get PDF
    In ultrasound imaging catheter applications, gathering the data from multi-element transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. In such applications, CMUT-on-CMOS technology allows for 2D arrays with many elements to be designed and bonded directly onto CMOS circuitry. This allows for complex electronics to be placed at the tip of the catheter which leads to the possibility to include electronic multiplexing techniques to greatly reduce the cable count required for a large element array. Current approaches to cable reduction tend to rely on area and power hungry circuits to function, making them unsuitable for use in catheters. Furthermore the length requirement for catheters and lack of power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analogue Time Division Multiplexing (TDM) is presented, which addresses the cable restrictions of the catheter and, using a novel digital demultiplexing technique, allows for a reduction in the number of analogue signal processing stages required

    Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters.

    Get PDF
    In real-time catheter based 3D ultrasound imaging applications, gathering data from the transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications like intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analog Time Division Multiplexing (TDM) is presented which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4 MHz to 11 MHz range. A TDM integrated circuit (IC) with 8:1 multiplexer is interfaced with a fast ADC through a micro-coaxial catheter cable bundle, and processed with an FPGA RTL simulation. Input signals to the TDM IC are recovered with -40 dB crosstalk between channels on the same micro-coax, showing the feasibility of this system for ultrasound imaging applications

    Cannabidiol interactions with voltage-gated sodium channels

    Get PDF
    Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels

    Cannabidiol interactions with voltage-gated sodium channels

    Get PDF
    Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high-resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels

    Front-end electronics for cable reduction in Intracardiac Echocardiography (ICE) catheters

    Get PDF
    3-D imaging ICE catheters with large element counts present design challenges in achieving simultaneous data readout from all elements while significantly reducing cable count for a small catheter diameter. Current approaches such as microbeamformer techniques tend to rely on area and power hungry circuits, making them undesirable for ICE catheters. In this paper, a system which uses are an efficient real-time programmable on-chip transmit (TX) beamformer circuitry to reduce the cable count on the TX side and analog 8/1 Time Division Multiplexing (TDM) with Direct Digital Demodulation (DDD) to reduce the cable count on the receive (RX) side is presented

    An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects

    Get PDF
    A new study with rat sciatic nerve model for peripheral nerve interfacing is presented using a fully-implanted inductively-powered recording and stimulation system in a wirelessly-powered standard homecage that allows animal subjects move freely within the homecage. The Wireless Implantable Neural Recording and Stimulation (WINeRS) system offers 32-channel peripheral nerve recording and 4-channel current-controlled stimulation capabilities in a 3 × 1.5 × 0.5 cm3 package. A bi-directional data link is established by on-off keying pulse-position modulation (OOK-PPM) in near field for narrow-band downlink and 433 MHz OOK for wideband uplink. An external wideband receiver is designed by adopting a commercial software defined radio (SDR) for a robust wideband data acquisition on a PC. The WINeRS-8 prototypes in two forms of battery-powered headstage and wirelessly-powered implant are validated in vivo, and compared with a commercial system. In the animal study, evoked compound action potentials were recorded to verify the stimulation and recording capabilities of the WINeRS-8 system with 32-ch penetrating and 4-ch cuff electrodes on the sciatic nerve of awake freely-behaving rats. Compared to the conventional battery-powered system, WINeRS can be used in closed-loop recording and stimulation experiments over extended periods without adding the burden of carrying batteries on the animal subject or interrupting the experiment

    Single-Chip Reduced-Wire CMUT-on-CMOS System for Intracardiac Echocardiography

    Get PDF
    CMUT-on-CMOS integration is particularly suitable for catheter based ultrasound imaging applications, where electronics integration enables multiplexing capabilities to reduce the number of electrical connections leading to smaller catheter cable profiles. Here, a single-chip CMUT-on-CMOS system for intracardiac echocardiography (ICE) is presented. In this system, a 64 element 1-D CMUT array is fabricated over an application specific integrated circuit (ASIC) that features a programmable transmit beamformer with high voltage (HV) pulsers and receive circuits using 8:1 time division multiplexing (TDM). Integration of pitch matched 64 channel front-end circuits with CMUT arrays in a single-chip configuration allows for implementation of catheter probes with miniaturization, reduced number of cables, and better mechanical flexibility. The ASIC is implemented in 60 V 0.18 μm HV process. It occupies 2.6×11 mm 2 which can fit in the catheter size of 9F, and reduces the number of wires from more than 64 to 22. This system is used for B-mode imaging of imaging phantoms and its potential application for 2D CMUT-on-CMOS arrays is discussed

    Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    Get PDF
    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices

    The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury

    Get PDF
    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy
    corecore